SysAdminNews
Microfluidic Cooling May Save Moore's Law

June 14, 2016

Michael Kassner, a freelance writer, wrote a very interesting article published at TechRepublic on how microfluidic cooling might be the answer to preventing Moore's Law from petering out. Moore's Law is the observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented and would continue for the foreseeable future. However, Moore's Law is under threat because existing technology is not able to keep microchips cool while still adding more processing power.

Intel has an interesting website and video celebrating Moore's Law: (video)


Fortunately, the Federal Government is working on a solution. DARPA has a program called ICECool Applications (ICECool Apps) which they describe as follows:

ICECool is exploring disruptive thermal technologies that will mitigate thermal limitations on the operation of military electronic systems, while significantly reducing size, weight, and power consumption (SWaP). The specific goal of ICECool Applications is to enhance the performance of RF power amplifiers and embedded computing systems through the application of chip-level heat removal with kW-level heat flux and heat density with thermal control of local submillimeter hot spots, while maintaining these components in their commonly-accepted temperature range by judicious combination of intra- and/or interchip microfluidic cooling and on-chip thermal interconnects.

Lockheed Martin is working with DARP on microfluidic cooling solutions. "Right now, we're limited in the power we can put into microchips," says John Ditri, the Principal Investigator on Lockheed Martin's ICECool effort. "One of the biggest challenges is managing the heat. If you can manage the heat, you can use fewer chips and that means using less material, which results in cost savings as well as reduced system size and weight. If you manage the heat and use the same number of chips, you'll get even greater performance in your system."

As Lockheed Martin describes it, "This research program could ultimately lead to a lighter, faster and cheaper way to cool high-powered microchips – by cooling the chips with microscopic drops of water. This technology has applications in electronic warfare, radars, high-performance computers and data servers."

Continue reading...
--This email is a service of SysAdminNews--
iEntry, Inc. 851 Corporate Drive, Lexington, KY 40503
©2016 All Rights Reserved  Privacy Policy  Legal

To Be Taken Off This Mailing, Visit This Page
For other support inquiries go here